Performance Implications of Link Characteristics (pilc)

Mail List, etc: http://pilc.grc.nasa.gov/pilc

Mark Allman, NASA Spencer Dawkins, Nortel Aaron Falk, Hughes

Agenda

- 1. Agenda bashing, other wasted time (Falk, 5 minutes)
- 2. Recap/Overview (Falk, 15 minutes)
- 3. Comments from list & charter review (Allman, 20 minutes)
- 4. Open floor for discussion of charter (Allman, Dawkins, Falk, 90 minutes)
- 5. Adjourn

Recent History & Observations

- TCP over Wireless 'informal meeting' in IETF-42 in Chicago expressed desire build on work of tcpsat
 - ➤ Wireless infrastructure community concerned about network (ie. TCP) performance over 'lousy' links
 - ➤ See: draft-montenegro-pilc-ltn-01.txt
- TCP over Satellite was misnamed;
 - ➤ Should have been TCP over long delay, high bandwidth links
 - ➤ Would have drawn right expertise; satellites not relevant to questions that were posed
 - ➤ Non-scalable approach for IETF to address performance issues
- · Since IETF-43 in Orlando...
 - > PILC BoF in Orlando generated significant interest and discussion on mail list
 - **** Lots of enthusiasm for a document recommending link design**
 - * Several active research efforts on overcoming noisy links
 - * Most energy is from wireless WAN folks
 - ** A draft charter has been developed...

slums vs. pilc

- · slums (Support for Lots of Unicast Multiplexed Sessions)
 - ➤ Addressing transport needs of applications for which TCP performs inefficiently
 - ➤ Essentially a top-down look at TCP performance
- · pilc
 - ➤ Addressing interactions between links and TCP performance -- regardless of application
 - ➤ Essentially a bottom-up look at TCP performance
- The Transport Area Directors (& working group chairs) will work to keep activities coordinated

Why create a working group?

- The Wireless WAN community is building networks and is asking for IETF guidance
 - These networks will be deployed soon and will have large numbers of users
- However, none of the link characteristics under discussion are isolated to W-WANs
 - ➤ Solutions and recommendations will have broad utility over many environments (e.g., satellite, modem, long-haul fiber)
- Additionally, the IETF should be aware of non-standard performance enhancing solutions being deployed in the Internet
 - ➤ Many of these solutions are being developed outside of the research community
 - ➤ The IETF should advise implementers of the risk of their solutions and the danger they pose to the Internet
 - ➤ Where possible IETF should advocate end-to-end solutions to mitigate TCP performance limitations
 - # (...and not violate the end-to-end principle)
 - # (...however not all mitigations in use do this...)

Performance Enhancing Proxies

(aka Active Network Elements aka Spoofing)

- PEPs are often used as a mechanism to provide non-standard improvements to TCP performance over lousy links
- It is widely accepted in satellite and wireless communities that PEPs are necessary and will continue to be
- · Why?
 - ➤ Many current and legacy commercial stacks are not 'modern' TCPs
 - ➤ Perception that deployment of new stacks will be slow
 - ➤ Perception that deployment of IPsec will be slow
 - ➤ Perception that modern TCPs will not improve performance sufficiently
- · Today, most PEPs are in private networks or tail circuits
- However, it is possible that these mechanisms will creep into the cloud
 - ➤ As overseas users become more concerned about performance, likely to see them appear in non-US ISPs
- Perceived incompatibility with host-to-host encryption may inhibit deployment of IPsec